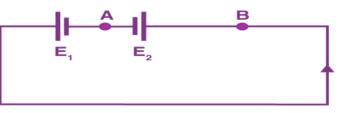


PERIODIC TEST-1

PHYSICS (042)

Class: XII	Time: 1hr
Date: 04.07.25	Max Marks: 25
Admission no:	Roll no:

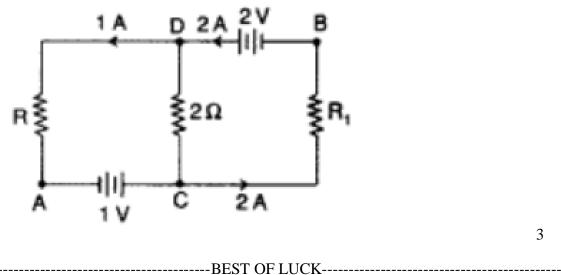

General Instructions:

- (i) There are three sections A, B, and C with 13 questions in total, Section A has 5 Multiple Choice Questions of one mark each, Section B has 4 questions of two marks each and Section C has 4 questions of three marks each.
- *(ii)* All questions are compulsory.
- *(iii)* Calculators are not allowed.

Section A

1.	Give the number of electrons passing through a wire per minute. The current flowing		
	through it is 500mA.		1
	a) 1.875×10^{20}	b) 6.875×10^{20}	
	c) 1.875×10^{-20}	d) 6.875 × 10 ⁻²⁰	
2.	Which type of current is flowing through a circuit	?	1
	a) Static current	b) Conventional current	
	c) Electronic current	d) Potential current	
3.	Give the SI unit of the magnetic field.		1
	a) Ampere	b) Tesla	
	c) Oersted	d) Weber	
4.	4. What is the work done by the magnetic field on a moving charged particle?		1
	a) Maximum	b) Minimum	
	c) Depends on the strength of the magnetic field	d) Zero	
5.	Which of the following will experience a maximu	m force, when projected with the	
	same velocity perpendicular to the magnetic field: (i) α -particle, and (ii) β -particle?		1
	a) Both α -particle and β -particle	b) None	
	c) β-particle	d) α-particle	
Section B			
6.	. For wiring in the home, one uses Cu wires or Al wires. What considerations are		
	involved in this?		2

7. The circuit in the figure shows two cells connected in opposition to each other. Cell E₁ is of emf 6V and internal resistance 2 ohm; cell E₂ is of emf 4V and internal resistance 8 ohm. Find the potential difference between points A and B.
2


- 8. Using the concept of force between two infinitely long parallel current carrying conductors, define one ampere of current.
- 9. Depict the trajectory of both charged particle moving with velocity v as it enters a uniform magnetic field perpendicular to the direction of its motion.

Section C

- 10. An ammeter of resistance 0.6 Ω can measure current upto 1.0 A. Calculate 3
 (i) The shunt resistance required to enable the ammeter to measure current up to 5.0 A.
 (ii) The combined resistance of the ammeter and the shunt.
- 11. Using Ampere's circuital law, obtain an expression for the magnetic field along the axis of a current carrying solenoid of length l and having N number of turns.
- 12. Two metallic wires of the same material have the same length but cross-sectional area is in the ratio 1: 2. They are connected3
 - (i) in series and
 - (ii) in parallel.

Compare the drift velocities of electrons in the two wires in both the cases (i) and (ii).

13. In the given circuit, assuming point A to be at zero potential, use Kirchhoff's rules to determine the potential A at point B.

2